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Abstract. In this work, the effect of the observing geometry on the tomographic reconstruction quality of both a regularized
Least Squares (LSQ) and a Compressive Sensing (CS) approach for neutrospheric water vapor tomography is compared based
on synthetic Global Navigation Satellite System (GNSS) Slant Wet Delay (SWD) estimates. In this context, the term observing
geometry mainly refers to the number of GNSS sites situated within a specific study area subdivided into a certain number of
volumetric pixels (voxels) and to the number of signal directions available at each GNSS site. The novelties of this research
are 1) the comparison of the observing geometry’s effects on the tomographic reconstruction accuracy when using LSQ resp.
CS for the solution of the tomographic system and 2) the investigation of the effect of the signal directions’ variability on the
tomographic reconstruction. The tomographic reconstruction is performed based on synthetic SWD data sets generated, for
many samples of various observing geometry settings, based on wet refractivity information from the Weather Research and
Forecasting (WRF) model. The validation of the achieved results focuses on a comparison of the refractivity estimates with
the input WREF refractivities. The results show that the recommendation of Champollion et al. (2004) to discretize the analyzed
study area into voxels with horizontal sizes comparable to the mean GNSS inter site distance represents a good rule of thumb
for both LSQ and CS based tomography solutions. In addition, this research shows that CS needs a variety of at least 15 signal
directions per site in order to estimate the refractivity field more accurately and more precisely than LSQ. Therefore, the use
of CS is particularly recommended for water vapor tomography applications for which a high number of multi-GNSS SWD

estimates are available.

1 Introduction

An accurate determination of the three dimensional (3D) atmospheric water vapor distribution is essential for weather forecast-
ing and climate research. In addition, atmospheric water vapor delays the microwave signal propagation within the atmosphere
and thus represents an error source in e.g. Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture
Radar (SAR) (InSAR) observations. Therefore, a precise knowledge of the water vapor field is required for accurate positioning
and deformation monitoring using GNSS and InSAR. However, the atmospheric water vapor distribution is difficult to model
because it is highly variable in time and space. Several approaches exist for reconstructing the 3D tomographic water vapor
reconstruction using one dimensional (1D) GNSS SWDs, see Section 2.

One of the main limiting factors in water vapor tomographies consists in the point-wise GNSS observing geometry, which
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causes an ill-conditioned inverse tomographic model that needs to be regularized. Yet, even after regularization, the observing
geometry composed e.g. of the number and the geographic distribution of the GNSS sites, the SWD signal directions, and the
voxel discretization still effects the quality of the tomographic solution. This work therefore meets the challenge of comparing
the observing geometry’s effect on a GNSS based water vapor tomography solved by means of Least Squares (LSQ) resp. by
means of Compressive Sensing (CS). By investigating the observing geometry’s effect on the LSQ and CS solution strategies,
the differences between the two solution approaches are better understood and recommendations can be given for future wa-
ter vapor tomography campaigns and the processing of their measurements. Based on synthetic data sets deduced from the
Weather Research and Forecasting Model (WRF), the presented work answers the research questions 1) in how far the rule
of thumb of Champollion et al. (2004), derived for LSQ and recommending a voxel size corresponding to the mean GNSS
inter site distance, can be transferred from a LSQ solution to a CS solution. In addition, this research investigates 2) in which
settings CS is able to more accurately and more precisely reconstruct the tomographic water vapor field than LSQ and 3) to
which extent multi-GNSS SWD observations improve the tomographic solution obtained by means of LSQ resp. CS, when
compared to solutions obtained from SWDs originating from the Global Positioning System (GPS) only.

2 Related work

Current water vapor tomographies can be distinguished e.g. based on the methodology and the data sets applied for solving
the tomographic model. The tomographic model is commonly established based on the directions along which space-geodetic
SWD estimates are acquired and based on a discretization of the investigated atmospheric volume into volumetric pixels (vox-
els) e.g. of constant refractivity. The existing tomography solution approaches applied to such a discretized atmosphere are
subdivided into iterative and non-iterative techniques. Bender et al. (2011) propose different iterative Algebraic Reconstruc-
tion Techniques (ART), while Hirahara (2000), Flores et al. (2000), Champollion et al. (2004), Troller (2004), Song et al.
(2006), Notarpietro et al. (2008), and Rohm (2013) apply different non-iterative methods for solving the tomographic system
using a LSQ adjustment. Thanks to its good capability to estimate dynamically changing parameters, Flores et al. (2000) and
Gradinarsky and Jarlemark (2004) choose a Kalman filter approach. Hirahara (2000) proposes a damped least squares solution
known from seismic tomography to solve the tomographic problem. Xia et al. (2013) combine iterative and non-iterative tech-
niques.

In addition to slant wet delay estimates from GNSS, Hurter and Maier (2013) introduce wet refractivity profiles from radio
occultation and radiosonde observations into a combined least squares collocation. Rather than using slant wet delay estimates
as input observations, Nilsson and Elgered (2007) apply a solution that relies directly on GPS phase observations.
Independently of the reconstruction strategy, due to the point-wise GNSS observing geometry, the tomographic system of
equations is usually ill-posed and needs to be regularized e.g. i) by constraining the tomographic system by means of pseudo
observations, ii) by introducing additional observations from models, from simulations, or from other sensors, or iii) by de-
creasing the amount of voxels crossed by no rays at all.

Both Flores et al. (2000) and Gradinarsky and Jarlemark (2004) regularize the solution by means of adding horizontal and
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vertical smoothing constraints to the tomographic system and by means of introducing a boundary constraint assuming the re-
fractivity to approach zero above a certain height. Alternatively, as proposed in Elosegui et al. (1998), the refractivity field can
be assumed to decrease exponentially with increasing height. Yet, while regularizing the solution significantly, both geometric
constraints and the exponential decay usually are not able to accurately model the real atmospheric state. As an alternative to
using horizontal and vertical constraints relying on physical approximations to the atmospheric behavior, the work in Heublein
et al. (2018) and Heublein (2019) exploit the signal’s sparsity in a particular, predefined transform domain as prior knowledge
for regularizing the tomographic system in order to then reconstruct the signal using an L;-norm minimization. Similarly, CS
and sparse reconstruction are applied here for the tomographic reconstruction of the 3D water vapor field and the CS solution
to water vapor tomography is compared to a solution obtained using a classical LSQ approach. Initially presented by Can-
des et al. (2006), Donoho (2006), Baraniuk (2007), and Candes and Wakin (2008) for the image or signal recovery from a
number of samples below the desired resolution or the Nyquist rate, CS has been, since then, applied to many remote sensing
problems in which sparse signals occur. E.g. Potter et al. (2010) and Alonso et al. (2010) describe the use of CS for SAR
imaging, Pruente (2010) applies CS for ground moving target identification, Zhu and Bamler (2010), Budillon et al. (2011),
Aguilera et al. (2013), and Zhu and Bamler (2014) apply CS to SAR tomography, and Li and Yang (2011), Zhu and Bamler
(2013), Grohnfeldt et al. (2013), Jiang et al. (2014), and Zhu et al. (2016) use CS for pan-sharpening and hyperspectral image
enhancement. When compared to classical LSQ adjustments usually applying Lo-norm regularizations, Compressive Sensing
and sparse reconstruction based on a small number of measurements led to promising results.

However, Compressive Sensing only yields encouraging results if the input data acquisition — corresponding, in water vapor
tomography, to the determination of SWD estimates — fulfills certain prerequisites. For general applications of CS, Rauhut
(2010) e.g. states that randomness in the acquisition step helps to utilizing the minimum number of measurements. When
reconstructing images based on frequency data, e.g. Candes et al. (2006) alternatively recommend to randomly measure fre-
quency coefficients such that sparse objects are sensed by taking as few measurements as possible. For CS-based water vapor
tomography approaches, no explicit requirements for the SWD acquisition or for designing advantageous observing geometry
settings have been established so far.

For LSQ, Champollion et al. (2004) state that the optimal horizontal size of a voxel should correspond to the mean inter-site
distance between the used GNSS sites. Given a certain cutoff elevation angle, the height layers’ thicknesses in their approach
should be defined such that signals received at a GNSS site situated within a voxel’s center are able to cross neighboring voxels.
Due to the small wet refractivity values in the upper layers and in order to make the tomographic solutions less sensitive to
errors in the input data, Rohm (2012) recommends to increase the height layer thicknesses with increasing altitude. In addition,
Rohm (2012) realizes that the uncertainty of the tomographic solution is largely influenced by the mathematical properties of
the design matrix, depending itself on the observing geometry. With the aim of giving advice for the installation of new perma-
nent sites and for the solution of future water vapor tomographies, this work therefore investigates the observing geometry’s

effect on the quality of both a LSQ and a CS solution to the tomographic system.
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3 Methodology

In order to analyze the observing geometry’s effect on the quality of the LSQ and CS solution to water vapor tomography,
different observing geometry settings are defined. Based on synthetic SWD estimates derived from WRF, 3D water vapor
distributions are reconstructed for each of the defined observing geometry settings using both LSQ and CS. The quality of the

LSQ and CS solutions to water vapor tomography is then compared w.r.t. the respective observing geometry settings.
3.1 Tomographic model

For neutrospheric tomography using GNSS SWDs, Flores et al. (2000) introduce the functional model

SWD;, cont = 107° - / Nyet dl, (1)
sp;

where SWD; on¢ stands for the integrated slant wet delay observations between a certain satellite and a certain GNSS site. As

in Heublein et al. (2018) and Heublein (2019), the variable sp;, is the ith slant ray path, i.e. the slant ray path of the radiowave

signal between a certain satellite and a certain receiver. The variable Ny, contains the wet refractivity along this path. The

index ¢ attains the values
i€Nwith1<i<N, (2)

where N corresponds to the number of observations available between any receiver and any satellite. When tomographically
reconstructing the wet refractivity, however, the continuous functional model from Equation 1 is usually replaced by a discrete

functional model

L
SWD; gise = 107 Y~ Nyt - dij. 3)
j=1

That is, the 3D water vapor distribution is discretized into L = P x Q x I voxels in longitude, latitude, and height, assuming a
constant refractivity value for each voxel. As in Heublein et al. (2018) and Heublein (2019), in this work, a uniform voxel dis-
cretization is selected in the horizontal directions, while the voxel sizes in the vertical direction increase with increasing height.
Horizontally, the voxels are limited by constant longitudes and latitudes. In the vertical direction, the voxels are separated by
layers of constant ellipsoidal height.

As in Heublein et al. (2018) and Heublein (2019), summarizing all observations SWD;_gisc in an observation vector Ygata €

RN>*1 all unknown refractivities Nyet; for

jENwithl1 <j<L 4)

in a parameter vector x € RE*1 and all distances d; j in a design matrix Pqata € RNV XL the discrete tomographic system from

Equation 3 can be rewritten as

Ydata = 45datau Y (5)
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with

d;; if signal ¢ crosses voxel j

dsdata(ivj) = { (6)

0 otherwise.

As each signal only passes a small subsection of the study area, most entries of the matrix @4, are zero and only a few matrix
elements are non-zero (e.g. only about 5% of the entries of @q,t, are non-zero in the case of an about 95 x 99 km? large study
area subdivided into 5 x 5 x 5 voxels, disposing of seven GNSS sites and ten signals per site). For voxels that are not crossed by
any signals, D4.t, has a zero column. Therefore, the tomographic model and the mathematical properties of the design matrix

largely depend on the observing geometry settings described in Section 3.3.
3.2 Solution of the inverse tomographic model using LSQ resp. CS

The LSQ solution to Equation 5 is derived by solving the minimization problem

3

T = argmin Hydata - Qdata : 33||§ + Z Fgonstraintst : ”yconstraintst - Qconstraintst . ng ) (7)
z t=1

data fidelity term

regularization constraints and prior knowledge
regularized by means of ¢ = 3 regularization terms, namely by horizontal and vertical smoothing constraints as well as by prior
knowledge from surface meteorology. As described in Heublein et al. (2018), the horizontal smoothing constraints assuming
the refractivity of a voxel (a, b, k) to equal the weighted mean refractivity of the surrounding voxels (p, ¢, k) with voxel indices

p # a and q # b within the same height layer k are defined by:

Nwetu,b,k = pr—a,q—b ' Nwetl’ﬂvk (8)

p,q

The weights can e.g. be derived using inverse distance weighting

_
dy o .
Zlb i (,b) # (p.q) N
Wp—a,q—b = -
p—a,q—=b o dp—a.q—b
-1 lf (aab):(paQ)7

with distances d,_, q—p between the center of voxel (p,¢) and the center of voxel (a,b) of the considered kth height layer.
Moreover, Davis et al. (1993) state that an average refractivity profile can be approximated assuming the refractivity to expo-

nentially decrease with height:

hi —h
Nt (hi) = Nyet (ho) - exp (— I’} 1°> (10)

The variable hy, is the height of the kth layer, & stands for some reference height at which the refractivity equals Nyt (ho), and

Hy..1c represents the scale height of the local troposphere. As Hg,1e is essential for defining an exponential decay with height,
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its value is determined within the solution of the tomographic system from a set of realistic values for Hgc,1o between 1000 m
and 2000 m. Both the weights for the horizontal and vertical smoothing constraints and for the prior knowledge from surface
meteorology are determined w.r.t. the data fidelity term using the place holder trade-off parameter I'2 . .. . in Equation 7.
The selection of the trade-off parameters from a certain number of logarithmically scaled possible trade-off parameters and the
selection of Hg, are described in Heublein et al. (2018) and Heublein (2019).

When aiming at a tomographic reconstruction of atmospheric water vapor by means of Compressive Sensing, the parameters

x are sparsely represented in some transform domain
r=V¥-s an

as sparse parameters s. Estimates § for these sparse parameters are obtained by

. . 2 2 2 2
§ = argmin ”y -V 3”2 + 1—‘CS : ”SH 1 +Pconstraints ’ ”yconstraints — Peonstraints - ¥ - 3”2 12)
s —_— —— —_——
data fidelity term L —norm regularization prior knowledge from surface meteorology

as described in Heublein et al. (2018) and Heublein (2019). Instead of adding horizontal and vertical constraints to the data
fidelity term as in Equation 7, an L;-norm regularization term is introduced in the CS solution to promote sparse solutions for
s, as described in Heublein et al. (2018) and Heublein (2019). The L;-norm minimization of the sparse parameters reduces the

solution space. The wet refractivity estimates & are then reconstructed using
r="-5 (13)

with a dictionary ¥ € RE*M | As in Heublein et al. (2018) and Heublein (2019), the dimension M of the parameters s € RM *1
in the transform domain varies with the number of base functions resp. atoms in ¥. Similarly to Heublein et al. (2018) and
Heublein (2019), we assert that a sparse representation of the refractivity distribution can be obtained by means of e.g. a
dictionary composed of Kronecker products of inverse Discrete Cosine Transform (iDCT) letters in longitude and latitude

directions and of Euler letters and Dirac letters in the height direction.
3.3 Observing geometry settings

In Section 4, tomographic solutions obtained based on a high number of different observing geometry settings are compared.
The observing geometry settings result from i) a fixed voxel discretization, ii) seven to 32 sites, iii) five to 20 signal directions
per site, and iv) 48 signal direction samples per number of sites and signals. Champollion et al. (2004) recommends 1) horizontal
voxel sizes for a LSQ solution to water vapor tomography greater than or equal to the mean inter-site distance between the
available GNSS sites, i.e. voxel sizes greater than or equal to about 37 x 37km? resp. to about 17 x 17km? in the case of seven
resp. 32 uniformly distributed GNSS sites within the investigated study area of about 95 x 99 km? size. In this work, the study
area is discretized into 5 x 5 x 5 voxels of horizontal sizes of about 19 x 20km?. In the vertical direction, five height layers
are distinguished. With increasing height, the height layer thicknesses increase from 1300 m up to 2900 m. The lowest layer’s

thickness is set to 1300m in order to ensure at least for signals with very low elevation angles that a signal arriving at the
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Table 1. Orbit characteristics used for approximating synthetic GPS, GLONASS, and Galileo satellite positions within circular orbits

GPS GLONASS | Galileo
Number of satellites per plane | 5 8 9
Number of orbital planes 6 3 3
Orbital radius 26600km | 25440km 29600 km
Inclination 55° 64.8° 56°

center of a voxel is able to pass the horizontally neighboring voxel within the same height layer. This is only possible if the
minimum thickness Ah,;, of the height layers is related to the horizontal voxel size Ahz = 20km and to the cutoff elevation
angle €. ¢ = 7° by means of

1
Ahpin = 3 - Ahz - tan €cys. (14)

The ii) minimum number of seven sites originates from the real GNSS Upper Rhine Graben (URG) network site distribution
within the analyzed study area. The maximum number of sites is chosen such that the rule of thumb of Champollion et al.
(2004), introduced in Section 2, is clearly fulfilled. The horizontal position of the synthetic GNSS sites corresponds, for seven
sites, to the position of real GNSS sites within the analyzed study area. The horizontal position of the additionally defined
synthetic GNSS sites is chosen such that they are uniformly distributed within the study area. The vertical position of the
synthetic GNSS sites corresponds to the height of the WRF digital elevation model at the horizontal position of the sites.
The iii) number of signal directions per site is motivated by the GPS resp. by a multi-GNSS orbit geometry. According to
Feairheller and Clark (2006) and as summarized in Table 1, the Global’naya Navigatsionnaya Sputnikova Sistema (GLONASS)
constellation disposes of 21 active plus three spare satellites on three orbital planes inclined by 64.8° w.r.t. the equator. In
contrast, Hofmann-Wellenhof et al. (2008) describe the GPS orbit constellation to consist of 21 satellites plus three spares on
six orbital planes inclined by 55° w.r.t. the equator, and the Galileo orbit constellation to contain 27 operational plus three
spare satellites on three planes inclined by 56° w.r.t. the equator. Therefore, five signal directions resp. five visible satellites
correspond to a pessimistic GPS setting e.g. with site specific shadowing. Eight signal directions per site may be considered
as a typical GPS setting at a GNSS permanent site, at which about 30 % of the total number of GPS satellites is visible at a
time. Similarly, a total number of 20 signal directions per site corresponds to a visibility of about 30 % of the total number of
satellites at a time within a multi-GNSS constellation composed of GPS, GLONASS, and Galileo. For each of the mentioned
numbers of sites and numbers of visible satellites, 48 signal direction samples are defined. Given the GPS repeat cycle of about
one day, the number of 48 signal direction samples is chosen in order to emulate about half-hourly orbit samples. Using the

orbit characteristics given in Table 1, synthetic satellite positions are approximated by means of circular orbits.
3.4 Study area and data sets

For each of the described observing geometry settings, synthetic SWD observations as input for the tomographic system

are deduced from WRF. As schematically illustrated in Figure 1, for each synthetic GNSS site, this is done by means of
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averaging the refractivity information of all WRF cells situated within the defined tomographic voxels, a direct raytracing
within these tomographic voxels, and adding together the SWD along each signal direction within the tomographic voxels
using Equation 3. The horizontal distribution of the synthetic GNSS sites within the URG study area is shown in Figure 2. The
signal directions result from selecting at random the defined number of signal directions from a synthetic multi-GNSS orbit
constellation composed of GPS, GLONASS, and Galileo. Both signals entering the study area on its top and on its side are
included.

From WRF, simulations of water vapor mixing ratio, temperature, pressure, and geopotential height are available at a 900 m
spatial resolution for generating the synthetic GNSS SWDs within the 95 x 99km? large study area situated in the URG as
shown in Figure 2. The topography within the Rhine Valley is flat. Height differences mainly occur at the foot of the Black
Forest mountain range. The height difference between the highest and the lowest synthetic GNSS site used for this study is
about 494 m.

Figure 1. Schematic illustration of the generation of synthetic GNSS SWDs according to Heublein (2019): Within each tomographic voxel
(grey), the WREF refractivities of all those WRF cells (blue) situated within that voxel are averaged. A direct raytracing along the considered

signal direction then yields the SWD introduced into the tomographic system.

4 Results

For an exemplary voxel of the lowest voxel layer, Figure 3 shows that variations in the SWD signal directions available within
the tomographic system cause variations in the estimated refractivities. In order to better classify the magnitude of the differ-
ence values in Figure 3, input wet refractivity profiles from WRF are given for five exemplary, neighboring voxel columns in
Figure 4. As variations in the signal directions imply a change in the observed atmospheric volume, these variations in the esti-
mated refractivities seem obvious. Yet, Figure 3 illustrates that the variations in the refractivity estimates vary with the selected

solution strategy. When considering many sites and many signal directions per site (e.g. at least 27 sites and at least 15 signal
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Figure 2. Distribution of the seven GNSS permanent sites (blue squares) as well as of the five to 25 additional, synthetic sites (black
symbols) within the URG study area. The additional, synthetic sites are distributed within a grid that uniformly covers the study area.

Triangles, pentagons, hexagons, diamonds, and circles represent the first, second, third, fourth, and fifth group of five additional sites each.

directions), the difference between the CS refractivity estimates and the WRF refractivity of the considered voxel approaches
zero for most samples. However, e.g. for 27 sites and 20 signal directions per site, there are some samples in which the CS
based refractivity estimate differs from the WRF refractivity by up to 3.3 ppm. L.e. for many signal directions, CS is able to
accurately and precisely the voxel’s refractivity, but for some signal directions, the voxel’s refractivity estimate does not match
well with the voxel’s validation refractivity from WREF. In contrast, in the case of few sites and few signal directions per site
(e.g. twelve sites and ten signal directions per site), LSQ yields refractivity estimates differing from —5.9ppm to —0.7 ppm
from the WRF refractivity, while the CS refractivity estimates differ much more from the WRF refractivity (differences of
—42.9ppm to 26.9 ppm). Consequently, when investigating the observing geometry’s effect on the quality of the tomographic
reconstruction, the chosen solution strategy as well as the effect of varying signal directions absolutely need to be taken into
account. Therefore, in this research, a representative set of 48 half-hourly samples of synthetic GNSS orbits is considered in

order to analyze the observing geometry’s effect on the tomographic reconstruction quality.
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Figure 3. Absolute differences between estimated refractivity and the WREF refractivity in ppm for an exemplary voxel of the lowest voxel

layer for the 48 samples of each investigated observing geometry setting. The two left columns dispose of an ordinate ranging from —20 ppm

to 20 ppm, the third column plots the differences within the range —10ppm to 10 ppm, and the right column plots the differences within

the range —5 ppm to 5 ppm. The legend in the upper left subplot holds for all subplots: red circles stand for LSQ results, while blue squares

represent the CS results. In each subplot, the minimum and maximum absolute differences in ppm of the LSQ resp. CS refractivity estimate

w.r.t. the WRF input refractivities is given in red resp. blue. Moreover, the mean and the standard deviation over all samples is indicated, for

LSQ by a red dashed line resp. for CS by a blue dashdotted line and by errorbars in the corresponding colors.
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Figure 4. WREF refractivity profiles in ppm for five exemplary neighboring voxel columns. The voxel numbers in the subplot titles indicate
the ground voxels above which the refractivity profiles are given. The height resp. the refractivity are consciously plotted on the abscissa
resp. on the ordinate, in order to make the Euler refractivity decay with height visibly similar to the Euler letters used in the Compressive
Sensing solution for modeling the refractivity decay with height.
1

Figure 5 confirms that the number of sites and the number of signal directions per site effect the quality of the tomographic
2

reconstruction. As expected, an increased number of sites and an increased number of signal directions per site, in general,

4 difference between estimated refractivities and WRF refractivities. Yet, in the case of a LSQ solution to the tomographic
5

3 decrease the mean of the absolute difference (called mean difference in the following) and the standard deviation of the
system, the mean difference decrease by means of introducing more SWD estimates into the tomographic reconstruction is
6 much smaller than that in the case of a CS solution. When averaged over 48 samples per observing geometry, introducing more

7 SWD estimates improves the mean difference by up to 1.3 ppm resp. 1.9 ppm (maximum improvement observed for 20 resp.
8 15 signal directions per site in the case of LSQ resp. CS).
9
10 When investigating the standard deviation of the differences between estimated refractivities and WRF refractivities for the CS
11

13

case, considering an increased number of synthetic GNSS sites only, while keeping a constant number of five signal directions
12 per site, is not advantageous. However, as of 15 different signal directions per site, a clear improvement in standard deviation

is visible when increasing the number of sites in the tomographic setting solved by means of CS. Independently of the num-

17

14 ber of sites, for realistic GPS-like observing geometry settings with five to ten signal directions per site, the LSQ refractivity
16 yields more accurate and more precise refractivity estimates than the LSQ solution if at least 22 sites are available. IL.e. this

15 estimates are more precise than the CS refractivity estimates. In contrast, as of 15 signal directions per site, the CS solution

study recommends the use of LSQ resp. CS for water vapor tomography disposing of GPS-only resp. of multi-GNSS SWD
18 estimates.

19 In the case of the maximum number of sites and the maximum number of signal directions per site (32 sites and 20 signal di-

11
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Figure 5. Mean of the absolute difference and std of the difference between estimated refractivities and WRF refractivities in ppm, deduced
from 48 samples of each investigated observing geometry setting composed of a certain number of synthetic GNSS sites and various numbers
of signal directions per site. The dashed resp. dotted lines serve for better following the variation of the represented quantities with the number
of sites, but only the discrete values indicated by the markers should be evaluated. The legend in the upper left subplot holds for all subplots.

In each subplot, the improvement by introducing 32 sites instead of seven sites is given in red resp. blue.

rections per site), when averaged over the 48 considered samples per observing geometry, the mean difference and the standard
deviation of the LSQ resp. CS reconstruction attain values of about 0.3 ppm resp. 0.0 ppm. Therefore, the number of sites and
the number of signal directions per site are of particular interest when aiming at a very accurate and very precise tomographic
reconstruction using CS.

For the given 5 x 5 x 5 voxel discretization with horizontal voxel sizes of 19km resp. 20 km, the rule of thumb of Champollion
et al. (2004) requests the mean inter site distance to correspond to no more than 19km to 20km. The results show that, using
the investigated synthetic data set with and at least 15 signal directions per site, the CS solution is able to more accurately and
more precisely reconstruct the atmospheric water vapor distribution than LSQ in the case of 22 sites within the 95 x 99 km?
large study area, i.e. at a site density of about one site per 20.7 x 20.7km? which is a bit lower than that required by the rule of
thumb of Champollion et al. (2004). L.e. if 15 signal directions are available per site, the rule of thumb can be transferred from

the LSQ solution to water vapor tomography to CS solutions.

Consequently, the following three main results are summarized from this study:
1. The rule of thumb of Champollion et al. (2004) can be transferred from LSQ to CS.

2. Based on site distributions obeying the rule of thumb of Champollion et al. (2004), CS needs a variety of at least 15

signal directions per site in order to estimate the 3D refractivity field more accurately and precisely than LSQ.

12
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3. While LSQ is recommended for water vapor tomographies based on GPS-only SWD estimates, CS is recommended in

the case of multi-GNSS SWD estimates yielding a variety of at least 15 signal directions per site.

5 Discussion and outlook

Section 4 states that the rule of thumb of Champollion et al. (2004) does not only hold for a tomographic solution based on
LSQ, but that it also ensures a good tomographic reconstruction in the case of a CS solution. Although this finding is based
on many different observing geometry settings, it only refers to a single voxel discretization and to a single study area with
a single topography and a single site distribution within that study area. As a consequence, this research mainly investigates
the validity of the rule of thumb of Champollion et al. (2004) for CS for the given study area. For generalization, further tests
should be performed that repeat the described methodology for other study areas and for site distributions varying not only in
the number, but also in the position of the sites.

Moreover, as the presented approach only relies on a synthetic data set deduced from WREF, the synthetic SWDs introduced
within the tomographic system in this research are too optimistic, when compared to real GNSS SWD estimates. Therefore, the
conclusions drawn in Section 4 cannot necessarily be transferred to tomographic applications involving real SWD estimates.
In order to get a better idea on the transferability of the results, the analysis should be repeated based on real data, or the effect
of adding different types of noise to the synthetic SWD estimates should be investigated (e.g. measurement and sensor noise
and uncertainties resulting from the observing geometry). In the presented approach, instead of mapping ZWDs to the slant
signal directions as in the case of a real GNSS processing, the synthetic SWD data set is computed based on a direct raytracing
within the same voxels in which the tomographic reconstruction is thereafter performed. Yet, Heublein (2019) shows that this
involves neglecting both a voxel discretization error and a mapping error committed in the case of real data.

Furthermore, Section 4 shows that the standard deviation of the difference between LSQ refractivity estimates and WRF re-
fractivities is 6 % to 65 % smaller than that computed based on the CS refractivity estimates, if at most ten different signal
directions per site are available. In contrast, in the case of a high number of sites and a high number of signal directions per
site, the LSQ reconstruction is not able to yield as accurate and as precise estimates of the water vapor distribution as CS.
I.e. when solving the tomographic system by means of LSQ, increasing the number of SWD signal directions improves the
tomographic reconstruction quality less than when using CS. This may be due to the geometric smoothing constraints forming
the basis of the LSQ solution. In the case of a small number of observations, the smoothing constraints ensure a smooth solu-
tion free of outliers that does not necessarily correspond to the prevailing atmospheric conditions. In the case of a high variety
of observations, the smoothing constraints become less important w.r.t. the data fidelity term within the LSQ solution to the
tomographic system, but they still effect the tomographic solution. Even in the case of a very high number of observations, the
tomographic system cannot be solved in a pure data-driven way. Thus, the tomographic solution always takes into account to
the chosen model assumptions, i.e. the LSQ solution always applies a certain amount of smoothing.

In addition, a low resp. a high number of signal directions chosen from a synthetic multi-GNSS constellation for the recom-

mendation of LSQ resp. CS for GPS-only resp. for multi-GNSS water vapor tomography applications should not be to set
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equal to considering a real GPS-only resp. a real multi-GNSS setting. Choosing a small number of signal directions from a
multi-GNSS constellation yields a higher variability in the signal directions than choosing the same small number of signal
directions from a GPS-only constellation. Since a high number of signal directions showed to be of particular importance in
the case of a CS solution, the quality of the refractivity estimates deduced using CS may decrease, if real GPS-only signal
directions are chosen.

Finally, future research should analyze in more detail which signal directions are necessary in a LSQ resp. CS based water va-
por tomography in order to well the refractivities of as much voxels as possible. A two-step CS LSQ may then help to improve
the refractivity estimates of those voxels in which CS yields inaccurate refractivity estimates even if a high number of sites and

a high number of signal directions per site are available.
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